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1. (a) Without using a calculator, calculate the following.

Note that you should show enough of your working to demonstrate that you have

not simply entered the expression into a calculator.

(i)
4

7
−

2

9

(ii) −
2

5
×

(

−
7

3

)

(iii)
2

7
÷

8

5
(iv) (−7)2

(v)

(

1

81

)

−
3

4

(vi) 6÷ (7× (−8)− 9)

(vii) log3 243

(viii) log49 7 [8]

(b) Simplify the following expressions by expressing them as a power of x and/or y, as

appropriate.

(i) x7 × x−8

(ii) x−
1

3 ÷ x−
3

5

(iii) (x5)
−4

[3]

(c) Express loga

(

(

y4

x2

)

−3
)

in terms of loga x and loga y [2]

(d) (i) Approximate 12.94999 to one decimal place.

(ii) Approximate 0.0001254 to two significant figures.

(iii) Express 184627.21 in scientific notation.

(iv) Express 0.0000045 in scientific notation to one significant figure. [4]

(e) Simplify (−2x2 − x− 4)− (−3x− 2). [1]

(f) Multiply out (2x4 + 3x2)(2x− 1). [2]

(g) Perform long division on
x2 + 4x+ 2

x+ 3
, giving the quotient and remainder. [4]

(h) Evaluate
2
∑

i=−2

−i2 [2]

(i) Calculate

(

10

2

)

without using a calculator.

Note that you should show enough of your working to demonstrate that you have

not simply entered the expression into a calculator. [2]

(j) Expand (3x+ 2y)3 using The Binomial Theorem. [4]
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2. (a) Sketch the graph of the line with equation y = x − 2 concentrating on the region

between x = −2 and x = 6. [2]

(b) Solve the simultaneous equations

−2x− 4y = −8

4x− 2y = −4

[3]

(c) Find the length of the line segment between (−1,−2) and (2, 3) [1]

3. (a) Write the expression 4x2 − 5x+ 1 in completed square form. [3]

(b) Solve the equation 4x2 − 5x+ 1 = 0 by using the quadratic formula. [2]

(c) Sketch the graph of the function y = 4x2 − 5x + 1, showing the y-intercept, the

x-intercept(s) (if applicable) and the turning point. [4]

4. (a) For each of the following:

• Say whether or not it is a function and if not say why not.

• If it is a function state the domain and the codomain.

(i)

f : R− → R
−

x 7→ −x− 2

(ii)

f : R− → R
+

x 7→ x2 + 2

[4]

(b) Sketch the graph of the function

f : {−3,−1, 0, 1, 3} → {−3,−1, 0, 1, 3}

−3 7→ 3

−1 7→ 1

0 7→ 0

1 7→ −1

3 7→ 3

[2]
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(c) Figure 1 contains the graphs of four of the following functions:

(i) y = 3x

(ii) y = −2x

(iii) y = −

(

2

7

)x

(iv) y = loge(x)

(v) y =

(

7

8

)x

(vi) y = log1/5(x)

Match the functions to the graphs. [4]

Figure 1: The functions for Question 4 (c).

(d) For each of the following functions, say whether they are injective, surjective or

bijective. If a function is not injective or surjective then say why not.

(i)

f : {1, 2, 3, 4} → {A,B,C,D}

1 7→ A

2 7→ D

3 7→ B

4 7→ B

(ii)

f : R− → R
−

x 7→ 2x

[3]
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(e) State whether each of the functions in Part (d) has an inverse function or not, giving

a reason in each case. [1]

5. (a) Convert 105◦ to radians, leaving your answer as a multiple of π. [1]

(b) Convert
7π

8
radians to degrees. [1]

(c) Using the geometric method, find tan

(

−
2π

3

)

without using a calculator. [4]

(d) Using whichever trigonometric formulae you like, but without using a calculator,

calculate the following.

Note that you should show enough of your working to demonstrate that you have

not simply entered the expression into a calculator.

(i) sin

(

3π

4

)

(ii) tan
(

−
π

12

)

[4]

(e) Find the size of the angle B in the triangle in Figure 2. [3]

Figure 2: The triangle for Question 5 (e).

6. (a) Find the derivative of f(x) = −x2 using first principles. [3]

(b) Find the derivatives of the following functions.

(i) f(x) = ecos(2) + 1

(ii) f(x) = x4

(iii) f(x) = cos(−4x)

(iv) f(x) = sin(2x)

(v) f(x) = −3x−
1

3 − 3e−3x − 3 ln(−3x) (where x < 0) [6]
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7. Find the following integrals.

(a)

∫

0 dx [1]

(b)

∫ 1

−1

x4 dx [2]

(c)

∫ π

2

0

sin(3x) dx [2]

(d)

∫

e−x − 3x−
4

5 dx [2]

8. (a) For the list of numbers 1, 3, 3,−6, 5, 6, 1, 2, find the

(i) Mean

(ii) Median

(iii) Mode(s)

(iv) Interquartile range [5]

(b) Find the line of best fit using the least squares method with the points

(−4, 3), (−2, 1), (0, 1), (3,−1) and (5,−4). [8]

—o0o—
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